A collocation method for weakly singular integral equations with super-algebraic convergence rate
نویسندگان
چکیده
We consider biperiodic weakly singular integral equations of the second kind such as they arise in boundary integral equation methods. These are solved numerically using a collocation scheme based on trigonometric polynomials. The singularity is removed by a local change to polar coordinates. The resulting operators have smooth kernels and are discretized using the tensor product composite trapezodial rule. We prove stability and convergence of the scheme achieving algebraic convergence of any order under appropriate regularity assumptions. The method can be applied to typical boundary value problems such as potential and scattering problems both for bounded obstacles and for periodic surfaces. We present numerical results demonstrating that the expected convergence rates can be observed in practice.
منابع مشابه
The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...
متن کاملA Collocation Method for Integral Equations with Super-Algebraic Convergence Rate
We consider biperiodic integral equations of the second kind with weakly singular kernels such as they arise in boundary integral equation methods. The equations are solved numerically using a collocation scheme based on trigonometric polynomials. The weak singularity is removed by a local change to polar coordinates. The resulting operators have smooth kernels and are discretized using the ten...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملSupergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 134 شماره
صفحات -
تاریخ انتشار 2016